
QST® – Devoted entirely to Amateur Radio www.arrl.org Reprinted with permission from April 2014 QST

Martin Ewing, AA6E
This digital panadapter1 software project
highlights the important role of program-
ming in modern Amateur Radio work. I
used software defined radio (SDR) and
digital signal processing (DSP) methods
to transform an I/Q (in-phase/quadrature)
audio IF to a live spectrum and waterfall. To
support these functions, I needed a graphi-
cal programming environment, an appro-
priate programming language, and support
libraries. I also needed an appropriate audio
capture system. And finally, I wanted to
make this run on an inexpensive computer
running Linux.

This project grew out of the desire to make
a panadapter display for the Elecraft KX3
transceiver. The KX3 provides I/Q (in-
phase/quadrature) IF outputs for just this
purpose. Common computer sound cards
will also support 48 kHz sampling, allow-
ing display of up to ±24 kHz around the
current RF tuning frequency. Many SDR
radios will provide I/Q audio streams for
the panadapter, such as the SoftRock2,
 FiFiSDR3, and others.

My aim was to develop software in a high-
level, easy-to-learn language (Python) to
run on small Linux microcomputer boards,
such as the BeagleBone Black4 or the Rasp-
berry Pi5, as well as on any common Linux
PC. I hope this project will be a way for
more hams to learn more about how to use
and program these powerful devices.

The common way to input the I/Q IF (up
to 48 or 96 kHz band pass) is through a
stereo sound card, which is built into many
PCs. If a built-in device is not available, an
inexpensive USB sound card can be used.
Displays range from the typical full-size
computer monitor down to cell-phone style
screens, such as BeagleBone’s optional
4-inch LCD.

The code is intended to be easily adapted to
new applications or hardware. Distributed
as Python source code, you can think of it as

A Tiny Python Panadapter
Put one of the popular and inexpensive BeagleBone or
Raspberry Pi microcomputers to work in your station.

QS1404-Ewing01

Linux Board
Computer

Display

(Optional)
Keyboard, Mouse,

Ethernet

Stereo
Sound Card

(48 kHz, 16 bit)

RTL
2832

Dongle

Receiver
Control

(Optional)

Input from
Receiver

I

Q

USB

1Notes appear on page 38.

Figure 1 —
Hardware
overview.

much as a development platform as a pol-
ished “plug and play” application. It is not
highly “tuned” for any particular configura-
tion, making it a useful starting point for
learning and developing your new projects.

This software will also support the RTL-
SDR6 “dongle” that is a popular way to get
VHF/UHF input for software defined radio.

System Overview
Like many radios these days, you can ap-
preciate a system for its hardware or its
software. And more and more of the action
is in the software!

Hardware View
The panadapter hardware is straightfor-
ward. There are only a few major com-

ponents — either a stereo sound card or
an RTL-SDR dongle, a computer, and a
display (see Figure 1). You have the option
to attach a keyboard, mouse, and Ethernet
connection to make up a complete Linux
workstation. You can also connect to a
receiver CAT (Computer Assisted Trans-
ceiver) port for control functions.

A wide range of hardware can provide these
functions. An ordinary desktop or laptop
PC that runs Linux will do fine, and the
sound card may be built in. However, it is
more interesting to use small Linux boards,
like the Raspberry Pi or BeagleBone. For
these, a USB sound card is likely to be the
best choice, and the display can be a 3-, 4-,
or 7-inch LCD screen. Some control func-

Reprinted with permission from April 2014 QST ARRL, the national association for Amateur Radio® www.arrl.org

tions are necessary, but we can implement
them with dedicated buttons without a
keyboard or mouse. Some screens support a
touch interface, but I have not implemented
touch in the software.

The main challenge of this project is the
software, especially when we are aiming
for fast audio and graphics features running
in as small a processor as possible.

Software View
Figure 2 shows a simplified block diagram
of the top level code of the panadapter,
called iq.py.

After initialization, the program gets a
chunk of I and Q IF (audio) data. Typi-
cally, this comes from PortAudio calls (and
call-back routines) that accept data from an
ALSA audio device, such as a USB sound
card. PortAudio uses non-blocking I/O so
that no data is lost during processing and
display, as long as there is adequate proces-
sor power.

QS1404-Ewing02

Initialize

Get I, Q
Samples

Compute
Log Power
Spectrum

Draw
Graph

Add Line
to

Waterfall

Draw
Overlay

Process
Command

Update
Screen

Overlay
Requested?

New
Keyboard

Command?

Figure 2 — Software flow chart.

Panadapter Application, iq.py
Audio Graphics Numerics Rx Control

PyAudio PyGame

Numpy HamlibPortaudio SDL

ALSA Xorg/directfb

Linux

QS1404-Ewing03

Figure 3 — Software libraries overview.

Alternatively, we can get data from an
RTL-SDR VHF/UHF dongle device. This
dongle can sample at high rates (up to 2.048
MHz), beyond the real-time capability of
smaller systems. For this reason, the RTL
mode uses blocking I/O and accepts some
loss of data.

Data in hand, we compute the log power
spectrum7 of each buffer in the chunk and
accumulate it into the chunk’s average log
power spectrum — the thing we will dis-
play. A power vs. frequency (“2D”) graph
is always plotted along with a calibrated
oscilloscope-like “graticule.” Optionally,
a waterfall display (power vs frequency vs
time, or “3D” plot) is also produced.

If requested, an overlay of diagnostic in-
formation and user help is drawn on top of
the data displays in a way that works well
on small display devices. Several pages of
help are available that guide the user to set
parameters using four pushbuttons. (I have
optimized the process for the BeagleBone’s
4-inch LCD4 display card, but it should
work on a range of processors and displays.)

If there is a keyboard event (or pushbutton
press), it is interpreted as a command to
change operating or display parameters.

Finally, the newly constructed graphic is
transmitted to the display, and the loop
continues.

Software Libraries
The software overview in Figure 3 shows
the major code blocks and how they layer
on each other and add functionality. These
are the resources we will use in the iq.py
program.

The bottom layer is the Linux operating
system, which supports the audio, graph-
ics, numerics, and control functions. Each
component may be built on simpler func-
tions that result in the desired capabilities.
For example, for the audio functions we use
PyAudio (people.csail.mit.edu/hubert/
pyaudio/), which is a Python form of the
C/C++ Portaudio library (www.port
audio.com), which in turn is based on
ALSA, the Advanced Linux Sound
Architecture.

Graphics is an important but computer-
intensive panadapter function. I chose the
PyGame library (www.PyGame.org),
which is built on SDL (Simple DirectMedia
Library). SDL in turn calls on Xorg or di-
rectfb for the most basic screen operations.

PyGame is a relatively simple graphics
system that is easy to program and reason-
ably efficient.

The numerical parts of my code are facili-
tated by the Numpy library (Numpy.org).
This is a large system for scientific and
engineering mathematics. I only need to use
Numpy’s Fast Fourier Transforms (FFTs)
and some other efficient array operations.

Finally, the Hamlib (www.Hamlib.org) li-
brary provides my program with the ability
to address and control many different types
of amateur radios.

Building the Operating System
In this section, we’ll see what needs to be
done to bring your brand new computer
board into a state that is ready for our Py-
thon application.

This project is meant to run on various hard-
ware platforms, but especially on the Rasp-
berry Pi (Pi) and the BeagleBone Black
(BBB). Other small boards, like the older
BeagleBone and BeagleBoard, should be
okay, and the code should run even better
on modern Linux PCs.

While all these small platforms are Linux-
based, the main software components —
PyAudio, PyGame, Numpy, Hamlib, and
the Python language — are all available for
Windows and MacOS. Porting this project
to Windows or Macintosh would be a fine
thing to do, but we are focusing on the
Linux OS.

If you’re considering getting a new com-
puter for this project, I would recommend
the BeagleBone Black or a card of equiva-
lent power. The Raspberry Pi (512 MB
Model B) is usable, but it requires more care
to select operating modes that do not exceed
its CPU capacity. On the other hand, the Pi’s
Raspbian operating system can be easier to
prepare for the panadapter project, and the
community of Pi users is very large.

QST® – Devoted entirely to Amateur Radio www.arrl.org Reprinted with permission from April 2014 QST

can follow the recipe for the
BeagleBone, beginning with in-
stallation of python-pygame, etc. If
you are using a distribution other
than Debian (like Fedora), your
packages may have different
names, and you may need to install
them with a different command.

Installing and Running
the Program
Table 1 summarizes the suggested
hardware to support the panadapter
application.

Recent Raspberry Pis are likely
to be the Model B with 512 MB
RAM. You may be able to use
the 256 MB model, but that has
not been tested. The Pi offers an
NTSC video output, but it will not

provide the needed display resolution. Use
the HDMI port if possible.

The BeagleBone Black with the LCD4
cape (a 4-inch LCD with five buttons
that stack on the BBB) is a good target
platform for a compact panadapter. I ex-
plored using the BeagleBone audio cape,
but at this writing the audio cape is not
fully compatible with the BBB and LCD4.
Improved audio support may eventually let
us have a self-contained BBB cape system.
Meanwhile, you must use an external USB
sound card.

If you are connecting to a receiver that
allows remote control (CAT), you may
want to use the Hamlib support, which will
require a USB radio connection or a USB-
serial port adapter. If you are only using the
RTL-SDR USB dongle receiver, you won’t
need a USB sound card.

I will now describe how to make
your Pi or BBB ready for our ap-
plication. Because the two boards’
suppliers configure their systems
differently, some preparations are
specific to each platform, but others
are common to both.

Raspberry Pi: First Steps
The Pi download website (www.
raspberrypi.org/downloads) rec-
ommends that first-time Pi users
install the “New Out of Box Soft-
ware.” If you follow this procedure,
you will be given a choice of oper-
ating systems. Select the Raspbian
option, and then sit back for a
complete Raspbian download.

If you’re familiar with the Linux/
Debian way of doing things, you
can get more control and possibly save
some time by installing Raspbian directly
from the download page.

The first thing is to set up the Pi’s operating
system for the panadapter project. Many of
these operations are useful for anything you
may want to do with your Pi. Detailed step-
by-step procedures are in the supplemen-
tary files in www.arrl.org/qst-in-depth. In
summary:

 Download Raspbian onto an SD card
using a PC. An 8 GB class 4 card or above
is suggested. Place the card in your Pi, at-
tach keyboard, monitor, Ethernet, and +5V
power. Wait for boot-up.

 Set up a password and other options as
desired in the raspi-config process. Set up
localization for time zone, keyboard, etc.

 Reboot and go to “Continuing with your
Pi or BBB” below.

BeagleBone Black: First Steps
The BeagleBone Black (BBB) requires
a bit more work than the Pi to configure for
our project, but in the end we will have a
system that is configured much like the Pi
above. I need to bring up a Debian 7.0.0
“Wheezy” (or later) Linux system on the
BBB. The major steps are outlined here,
while details are given the supplementary
files mentioned above.

 Follow instructions at eLinux.org/
BeagleBoardDebian, building a Debian
system on an 8 or 16 GB microSD card
using a convenient PC.

 Install the microSD card on the BBB.
Attach an HDMI monitor, keyboard, and

A Raspberry Pi Model B microcomputer.

Table 1 — Hardware Configurations
Device (Approx pricing) Required Desirable

Raspberry Pi ($35) Raspberry Pi (Model B) 512 MB RAM
 4 GB SD card 8 GB SD card
 Powered USB hub USB-serial port (rig control)
 USB sound card RTL-SDR dongle
 HDMI monitor
 Keyboard and mouse

BeagleBone Black ($45) 4 GB microSD card 8 GB microSD card
 Powered USB Hub USB-serial port (rig control)
 USB sound card RTL-SDR dongle
 LCD4 display or HDMI display
 Keyboard and mouse

Personal Computer Recent Linux OS Traditional serial port or
 Built-in stereo input sound USB-serial port (rig control)
 card or USB sound card RTL-SDR dongle

mouse. Attach an Ethernet connection to
your local router.

  Install the LXDE desktop package from
the network.

Continuing with Your Pi or BBB
Most of the following is common to both
boards. Again, more detailed steps are pro-
vided in the supplementary files.

 Install the packages python-pygame,
python-hamlib2, python-dev, portau-
dio19-dev, and python-numpy from your
repository.

 Obtain and install the latest pyAudio
package.

 If desired, obtain, build, and install rtl-sdr
and pyrtlsdr for RTL-SDR support.

 Install optional components, set up user
accounts, etc.

Linux PC
If you have an up-to-date Linux PC, you

Reprinted with permission from April 2014 QST ARRL, the national association for Amateur Radio® www.arrl.org

high-end sound cards to perform
better for software defined radio
where the best image rejection
and dynamic range is desired.

The iConnex and UCA202 both
appear to use the TI/Burr-Brown
PCM2902 chip, which has an
interesting quirk. In at least
some versions, the left channel
is delayed by exactly one sample
relative the right channel. I have
provided the “—LAGFIX” option
in iq.py to correct for this “fea-
ture” (bug!), which would oth-
erwise make these sound cards
unusable for SDR work.

To determine the suitable operat-
ing levels for your sound card,
in general, you’ll want to adjust
receiver gain (or sound card input

gain) to a level just enough that you get rea-
sonable “counts” on receiver noise, but no
more. This will allow maximum dynamic
range (headroom) for receiving. In practice,
if your typical noise level sample values
peak at ~ ±10 counts (out of full scale
±32,767 in a 16 bit converter) that should
be enough. (Be sure your noise is coming
from your antenna, not your electronics!
Verify that the noise goes down when you
disconnect the antenna.)

If you need more gain, you may be tempted
to use the sound card’s preamplifier, if
it has one. This may or may not help.
If you have a “phono” preamp, it prob-
ably applies RIAA equalization to match
a phonograph’s frequency response. That
will attenuate high frequencies severely (by
~20 dB at 20 kHz). A “mic” preamp should
not have this problem. Indeed, the iMic’s
mic preamp seems to improve the overall
frequency response of the iMic.

Depending on your receiver and its ground-
ing arrangements, it may be helpful to use
audio isolation transformers for the I and

Some points to watch out for
with any of the small Linux
boards:

 Be sure that your +5 V supply
has adequate current capacity
and your USB cable is good. Es-
pecially when driving external
USB devices that take power,
you can easily get unreliable op-
eration if the voltage droops too
much. A 2 A supply or greater is
a good bet.

 Use a powered USB hub if you
have multiple USB devices. This
minimizes the power drain from
the CPU board.

 When it comes to powering
down, it is preferable to use the
shutdown -h now command (or
equivalent GUI option) and then
wait for activity to stop rather than simply
switching off the power. If you don’t do this
(and many of us don’t), there is some risk of
data corruption.

Sound Cards
Most USB sound cards have a standard
interface that works with the ALSA drivers
found in typical Linux installations. Board-
level plug-ins (with PCI or PCI Express
connections) or built-in devices are also
supported, and appear the same to higher-
level software. It is rare that special drivers
are needed, unless you have a complex
sound card that includes special processing
and mixing options.

For this project, we have evaluated a num-
ber of stereo sound cards at different price
levels. The good news is that all of them
seem to work. The bad news is that you
get what you pay for. The less expensive
units will not go above 48 kHz sampling
and may offer poorer frequency response,
less sensitivity, or more noise. Some offer
phono or microphone preamplification, and
some do not.

A BeagleBone Black microcomputer.

The sound cards we have looked at are sum-
marized in Table 2. There are many others
on the market, so this is just a sampling.

It is difficult to compare published specs on
sound cards, especially the cheaper ones,
because usually there are no published
specs! QST reviewed sound cards in 2007.9

Those products are probably unavailable
now, and there were no USB sound cards
considered. Nevertheless, the article is still
a useful review of the complications of
evaluating sound cards. The test procedures
evaluated cards as “audio” devices as if
for human listening, using a logarithmic
frequency scale. For SDR, we want a flat
response nearly up to the Nyquist frequency
(1⁄2 the sampling rate) and we must think
in terms of linear frequency scales, where
the last kHz of response is as important as
the first.

I do not have precise measurements for
sound cards, although there is some rel-
evant data on the Internet.10 The less expen-
sive options are certainly usable for casual
work as a panadapter, but you can expect

Table 2 — Some Inexpensive USB Sound Cards with Stereo Inputs
Unit Brief Specs Approx Pricing Comments

iKey-Audio iConnex 48 kHz, phono
preamp

$40 PCM290x based (may require lag
correction)

Behringer UCA202 48 kHz, no preamp $30 Similar to iConnex without preamp

Griffin iMic 48 kHz, mic preamp $29 Spurious peaks at 5 kHz and
multiples on BBB. 114 dB SNR
claimed

QST® – Devoted entirely to Amateur Radio www.arrl.org Reprinted with permission from April 2014 QST

I provide the special program pa.py so that
you can see the sound devices that PyAudio
sees. Type python pa.py in a terminal
window, and examine the output. The fol-
lowing is a partial listing of pa.py’s output
for a Raspberry Pi with a Sound Blaster
SB1240 USB sound card:

DEVICE: 0; NAME: ‘bcm2835 ALSA:
bcm2835 ALSA (hw:0,0)’
defaultSampleRate : 44100.0
maxInputChannels : 0
maxOutputChannels : 2

DEVICE: 1; NAME: ‘USB Sound Blaster
HD: USB Audio (hw:1,0)’
defaultSampleRate : 48000.0
maxInputChannels : 2
maxOutputChannels : 2

DEVICE: 2; NAME: ‘USB Sound Blaster
HD: USB Audio #1 (hw:1,1)’
defaultSampleRate : 48000.0
maxInputChannels : 2
maxOutputChannels : 2

DEVICE: 3; NAME: ‘USB Sound Blaster
HD: USB Audio #2 (hw:1,2)’
defaultSampleRate : 44100.0
maxInputChannels : 0
maxOutputChannels : 2

PyAudio’s device 0 is the Pi’s on-board
bcm2835 output-only “sound card.” De-
vices 1 – 3 correspond to the three logical
devices internal to the SB1240. Because
this card’s internal addressing is not docu-
mented, we use trial and error to find that
PyAudio device (index) #2 gives us the
SB1240 input channels we need for the
panadapter.

I can get similar information by using the
Linux and ALSA command line. The vir-
tual directory /proc/asound/ describes the
current ALSA status. For example, you can
type cat /proc/asound/cards to get
a listing of all attached sound cards. Other
useful commands include alsamixer,
amixer, arecord, and aplay. Check
their pages for details.

When you use the RTL-SDR dongle for
input, it will not show up as a sound card.
No index setting is required, because we do
not use PyAudio. The code finds the RTL
device automatically.

Setting Up an RTL-SDR Dongle
Using the RTL-SDR dongle is simple. You
attach an antenna, and you plug in your

QS1404-EwingA

Multiply

Multiply

IF
Outputs

I

Q

0°

90°

Input
Signal

Local
Oscillator

Figure A — In-phase and quadrature IFs.

In-phase and
Quadrature IFs
In-phase and quadrature (I/Q)

sampling refers to the technique of
mixing (multiplying) an RF or IF signal
with a local oscillator that is provided
in 0 degree and 90 degree phase
shift versions. This produces two IF
streams, which may be treated as
real and imaginary parts of a complex
signal. With I/Q IFs, you can distin-
guish positive and negative sidebands
relative to the local oscillator. It is the
same principle that is used in the
“phasing method” for single sideband
generation and detection. The IFs are
sampled and converted to digital form
with an analog to digital converter. For
more information, consult “DSP and
Software Radio Design,” Chapter 15
in recent editions of The ARRL Hand-
book for Radio Communications.

Q signals between the radio and the sound
card. A convenient commercial unit is the
“Cables to Go 40000 3.5mm Extension Ste-
reo Audio Isolation Transformer,” which
can be found by Internet search. Alterna-
tively, you can wire your own if you have a
1:1 audio transformer.

The RTL-SDR Dongle
As a byproduct of the DVB-T (digital video
broadcast — terrestrial) service in use in
many countries (but not in North America),
an inexpensive USB “dongle” receiver has
become available for Amateur Radio ap-
plications in the VHF-UHF range. For our
purposes, it consists of a tunable front-end
and an 8-bit I/Q sampler, capable of running
at over 2 MHz sampling rate. Because it is
based on the Realtek RTL2832 quadrature
decoder chip, it is often known as the “RTL-
SDR” receiver. These devices are available
on eBay (www.ebay.com) for $10 and up.

To our Linux boards, the RTL-SDR looks
like a USB device. It has Linux support
for SDR, so it was a natural addition to
the panadapter project. While our software
will display up to a 2 MHz spectrum slice
with the RTL-SDR, we probably do not
have the CPU resources to keep up with a
continuous 2 MHz sample rate — at least
not without extra programming. I manage
by taking data in bursts only when the com-
puter is ready. Discarding some incoming
data reduces sensitivity, but we still can get
a useful spectrum display.

I should note that the RTL-SDR is a very
simple receiver, with large instantaneous
bandwidth and limited sensitivity. It is
easily overloaded by strong out-of-band
signals. Serious amateur work may require
a good antenna, a preamplifier, and a band-
pass filter.

Downloading and Installing
the Project
At this point I assume you have set up
your Raspberry Pi, BeagleBone Black, or

An RTL-SDR dongle receiver.

other small Linux board according to the
vendor’s directions and the hints we have
given above. You will have a Linux environ-
ment that includes Python and necessary
packages. The job now is to download and
install the panadapter Python files.

All the files for the project can be down-
loaded as a compressed zip or tar archive
at www.arrl.org/qst-in-depth or at www.
aa6e.net. Download this file to a conve-
nient directory and then use the command
unzip iq.zip or tar xzf iq.tar.
gz, which will expand the archive into a
new “iq” directory.

Setting Up a Sound Card
The iq.py code needs to know which PyAu-
dio index number to use for audio input. If
you have only one audio device, things are
simple. You can use the default setting (–1).
If this doesn’t work, or if you have multiple
audio devices, you may need to do some
more work.

Reprinted with permission from April 2014 QST ARRL, the national association for Amateur Radio® www.arrl.org

experimental work, we might
prefer to run on a modern Linux
PC, which will usually have
more computing and graphics
power than the small cards offer.
Squeezing the application into a
small device is fun, but it does
limit the functionality.

My thanks to Leigh Klotz Jr,
WA5ZNU, for helpful discus-
sions during the development of
this article.

Notes
1A panadapter is a spectrum analyzer
 that displays of power vs frequency,
 generally showing the IF passband
 surrounding an amateur’s current
 operating frequency.
2SoftRock is a series of kit-form re-
 ceivers and transceivers developed
 by Tony Parks, KB9YIG. They are
 available from fivedash.com. There
 is an active “softrock40” Yahoo!

 group for user support.
3FiFiSDR is a kit receiver described at o28.

sischa.net/fifisdr/trac and www.df3dcb.de/
FiFi-SDR_FA1110.pdf (in German). A partially
assembled version is sold by FunkAmateur
magazine at www.box73.de/product_info.
php?products_id=2425. The receiver was re-
viewed in the September 2013 issue of QST.

4The BeagleBone Black is developed by the Bea-
gleBoard.org Foundation. See beagleboard.org.

5The Raspberry Pi is developed by the Raspberry
Pi Foundation (UK). See raspberrypi.org.

6See Robert Nickels W9RAN, “Cheap and Easy
SDR,” QST, January 2013, p 30, sdr.osmocom.
org/trac/wiki/rtl-sdr.

7The Fourier transform (spectrum) provides a com-
plex voltage-like value in each frequency chan-
nel. The power spectrum, the power in each
channel, is the square of voltage (really the com-
plex amplitude squared). Finally, the log power
spectrum is the logarithm (usually given in dB) of
power in each channel.

8Jonathan Taylor, K1RFD, “Computer Sound Cards
for Amateur Radio,” QST, May, 2007, p 63.

9For example, data from Larry Phipps, N8LP, www.
telepostinc.com/sound cards.html.

10Current peak values for I and Q samples are dis-
played on the overlay panels of the iq.py pro-
gram.

For updates to this article,
see the QST Feedback page at

www.arrl.org/feedback.

Martin Ewing, AA6E, was first licensed in
1957, when Sputnik went up and SSB was still
new. After studying physics and astronomy, he
had careers in radio astronomy and academic
computing until retiring in 2002. He currently
serves as an ARRL Technical Advisor and as
a volunteer in the ARRL Laboratory, with par-
ticular interests in Linux software and software
defined radio. You can reach Martin at 28 Wood
Rd, Branford, CT 06405, or via e-mail at aa6e@
arrl.net.

dongle to your USB hub. The
initial operating frequency and
sample rate are set from the
command line as shown below.

Setting Up a BeagleBone
Black and LCD4
The LCD4 is one several LCD
capes that can stack on the
BBB. You need to plug it in to
the CPU board, but be sure to
use the right orientation: If the
BBB Ethernet jack is at the left,
the LCD4 pushbuttons should
be along the right side.

With the LCD4 installed, the
BBB should boot up to an
LXDE desktop on the LCD.
The HDMI video output is
disabled automatically. Other
s izes of LCD cape (eg,
3 inch or 7 inch) can probably be used, but
the SCREEN_SIZE value in iq.py should be
adjusted appropriately.

The buttons on the LCD4 are labeled left,
right, up, down, and enter. Pressing one
of these buttons is equivalent to pressing
the corresponding arrow keys (or enter)
on a standard keyboard. Each press of the
ENTER button produces a new help overlay
on the LCD4. An example is shown in
Figure 4.

Command Line Options
Because it is designed for operating on dif-
ferent platforms for different kinds of oper-
ating, the iq.py code has many user-settable
parameters and modes. You can change
most of them from the Linux command
line. Once you find a combination you want
to use repetitively, you can put it into a shell
script (a file) or define a shell alias that has
everything set for you. Or, you can edit
the source code iq_opt.py and change the
default values.

The code is normally started from the Linux
command line, using the python command.
I assume you have started a terminal win-
dow and changed directory (cd) to the di-
rectory where you placed iq.py. If you feel
lucky, you can try the command: python
iq.py.

This will use all the default values. If you
have a complicated sound card or multiple
sound cards, you will have to use pa.py (or
trial and error) to find the appropriate index
value, as discussed above.

On the Raspberry Pi, for example, we might
use:

python iq.py --index=1 --buf-
fers=15 --taking=4 --size=256.

The index setting is okay for a typical input
sound card.

A typical command to start receiving with
an RTL-SDR dongle would be:

python iq.py --RTL --rate=
2048000 --rtl_freq=144200000.

This would set up a 2.048 MHz sample rate
centered at 144.2 MHz.

A complete table of options is provided in
the supplementary files.

Conclusion
The Tiny Python Panadapter is usable soft-
ware that runs on very inexpensive hard-
ware. It is implemented in Python, which is
a very capable programming language that
is relatively easy to work with, although
lower-level approaches (like C or C++)
could offer greater performance at the cost
of more programming effort. The Python
approach, supported by PyGame, PyAudio,
etc. is a good choice if we want the code to
be accessible to as many experimenters and
learners as possible.

There are many directions this project could
take. It could readily support recording
and playback of the I/Q IF signal. It could
support full SDR transceiver operation, pro-
viding demodulated audio on receive, and
generating I/Q IF signals on transmit. For

Figure 4 — Screen shot of iq.py with help overlay.

